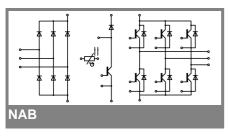


MiniSKiiP[®]2

3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SKIIP 23NAB126V20

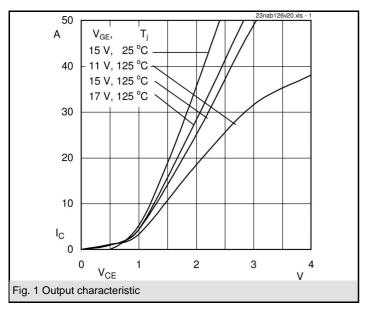
Preliminary Data

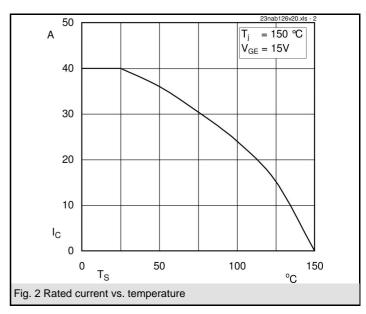
Features

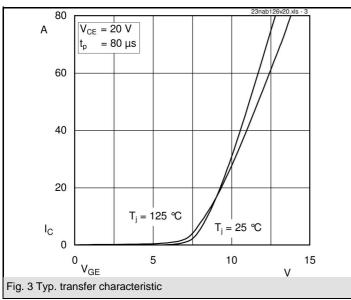

- Fast Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL reognised file no. E63532

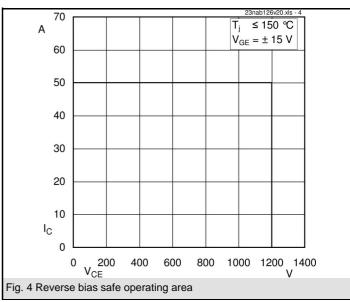
Typical Applications*

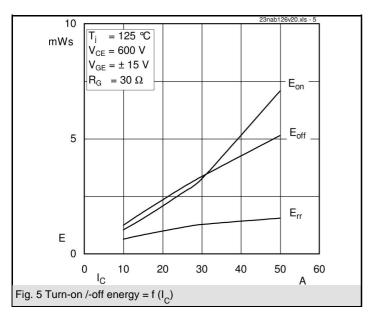
- Inverter up to 16 kVA
- Typical motor power 7 kW

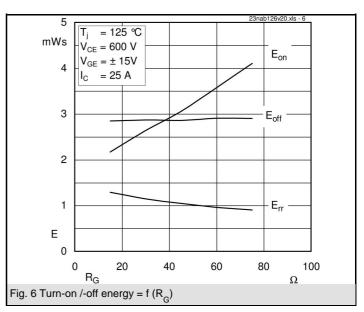

Remarks

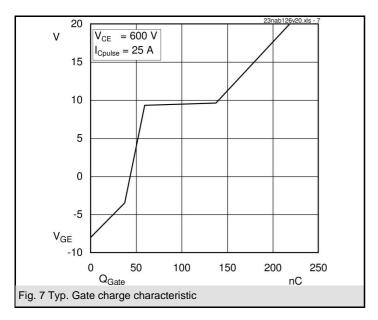

• V_{CEsat}, V_F = chip level value

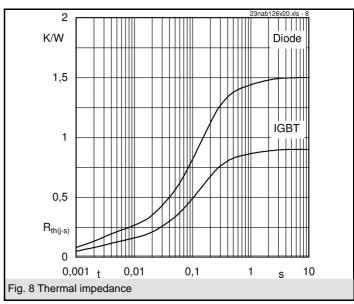


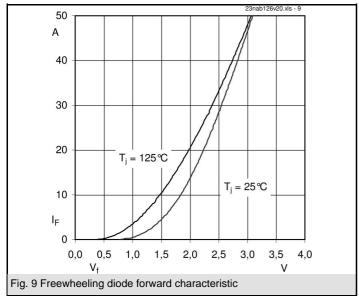

Absolute Maximum Ratings $T_S = 25^{\circ}C$, unless otherwise specified							
Symbol	Conditions	Values	Units				
IGBT - Inverter, Chopper							
V_{CES}		1200	V				
I _C	T _s = 25 (70) °C	41 (31)	Α				
I _{CRM}		50	Α				
V_{GES}		± 20	V				
T _j		-40+150	°C				
Diode - Inverter, Chopper							
I _F	T _s = 25 (70) °C	27 (21)	Α				
I _{FRM}		50	Α				
T_j		-40+150	°C				
Diode - Rectifier							
V_{RRM}		1600	V				
I _F	T _s = 70 °C	46	Α				
I _{FSM}	$t_{\rm p}$ = 10 ms, sin 180 °, $T_{\rm i}$ = 25 °C	370	Α				
i²t	$t_{\rm p}^{\rm r}$ = 10 ms, sin 180 °, $T_{\rm i}^{\rm r}$ = 25 °C	680	A²s				
T_j	,	-40+150	°C				
Module			1				
I _{tRMS}	per power terminal (20 A / spring)	40	Α				
T _{stg}		-40+125	°C				
V _{isol}	AC, 1 min.	2500	V				

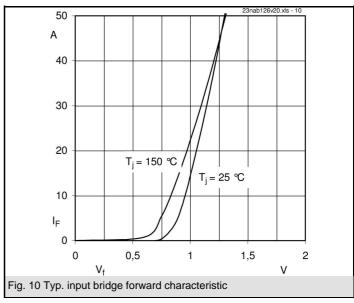

Characte	ristics	T _S = 25°C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter, Chopper								
$\begin{matrix} V_{\text{CEsat}} \\ V_{\text{GE(th)}} \\ V_{\text{CE(TO)}} \\ r_{\text{T}} \\ C_{\text{ies}} \end{matrix}$	$\begin{split} & I_{\text{Cnom}} = 25 \text{ A, T}_{j} = 25 \text{ (125) °C} \\ &V_{\text{GE}} = V_{\text{CE}}, I_{\text{C}} = 1 \text{ mA} \\ &T_{j} = 25 \text{ (125) °C} \\ &T_{j} = 25 \text{ (125) °C} \\ &V_{\text{CE}} = 25 \text{ V, V}_{\text{GE}} = 0 \text{ V, f} = 1 \text{ MHz} \end{split}$	5	1,7 (2) 5,8 1 (0,9) 28 (44) 1,8	2,1 (2,4) 6,5 1,2 (1,1) 36 (52)	V V V mΩ nF			
C_{oes} C_{res} $R_{\text{th(j-s)}}$	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ per IGBT		0,3 0,2 0,9		nF nF K/W			
$\begin{aligned} & t_{d(on)} \\ & t_r \\ & t_{d(off)} \\ & t_f \\ & E_{on} \\ & E_{off} \end{aligned}$	under following conditions $\begin{aligned} &V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V} \\ &I_{Cnom} = 25 \text{ A}, T_j = 125 ^{\circ}\text{C} \\ &R_{Gon} = R_{Goff} = 30 \Omega \\ &\text{inductive load} \end{aligned}$		75 30 460 90 2,7 2,9		ns ns ns ns mJ mJ			
Diode - Inverter, Chopper								
$\begin{aligned} & V_F = V_{EC} \\ & V_{(TO)} \\ & r_T \\ & R_{th(j-s)} \\ & I_{RRM} \\ & Q_{rr} \\ & E_{rr} \end{aligned}$	$\begin{split} & I_{\text{Fnom}} = 25 \text{ A, } T_j = 25 \text{ (125) °C} \\ & T_j = 25 \text{ (125) °C} \\ & T_j = 25 \text{ (125) °C} \\ & \text{per diode} \\ & \text{under following conditions} \\ & I_{\text{Fnom}} = 25 \text{ A, } V_{\text{R}} = 600 \text{ V} \\ & V_{\text{GE}} = 0 \text{ V, } T_j = 125 \text{ °C} \\ & \text{di}_{\text{F}}/\text{dt} = 1200 \text{ A/}\mu\text{s} \end{split}$		2,4 (2,2) 0,9 (0,6) 60 (64) 1,5 30,2 3,1 1,2	2,9 (2,7) 1,1 (0,8) 72 (76)	V V mΩ K/W A μC mJ			
Diode - R		•						
V_{F} $V_{(TO)}$ r_{T} $R_{th(j-s)}$	$I_{Fnom} = 25 \text{ A}, T_j = 25 \text{ °C}$ $T_j = 150 \text{ °C}$ $T_j = 150 \text{ °C}$ per diode		1,1 0,8 13 1,25		V V mΩ K/W			
Temperat	Temperature Sensor							
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω			
Mechanical Data								
w M _s	Mounting torque	2	65	2,5	g Nm			

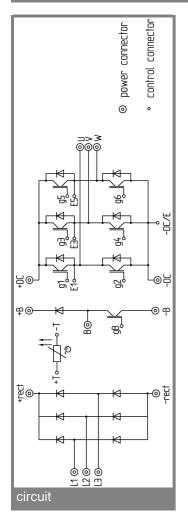


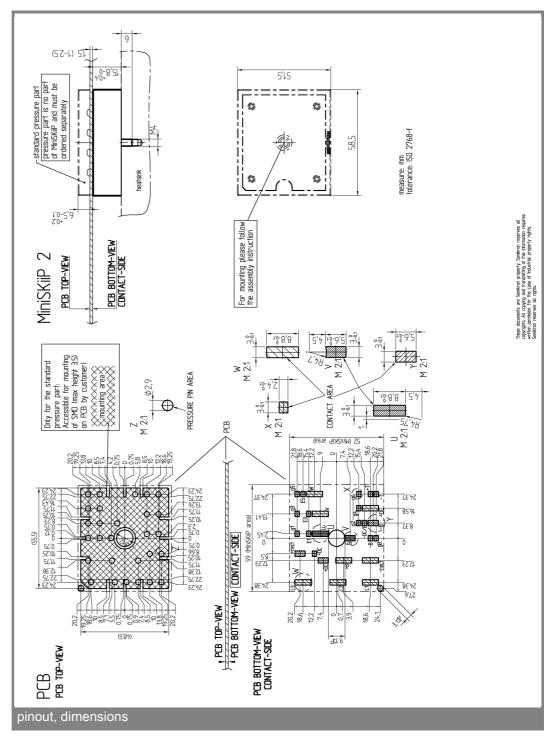












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.